
ASOCIACIÓN DE INGENIERÍA Y DISEÑO ASISTIDO

NEUMÁTICA EN ENTORNOS PRODUCTIVOS

María del Mar Espinosa

Manuel Domínguez

Título original: Neumática en entornos productivos

Autores:

© María del Mar Espinosa y Manuel Domínguez

Queda prohibida la reproducción total o parcial de esta obra sin la autorización expresa de los autores

© Asociación de Ingeniería y Diseño Asistido Apartado de correos 36.180. 28080 Madrid publicaciones@sedeAIDA.org http://www.sedeAIDA.org

Depósito legal: M-41263-05 ISBN: 84-609-3620-1

Edición: Octubre de 2005 Impreso en España

PRÓLOGO

El lenguaje técnico dentro de la ingeniería y de la industria es probablemente uno de los pocos leguajes de comunicación de carácter internacional. Un plano elaborado por un técnico en Europa puede ser fácilmente interpretable por otro técnico que necesita fabricar el producto en una factoría en Asia o América.

La elaboración de proyectos basados en componentes neumáticos goza de esta suerte llevando la técnica de la representación de componentes a la sistematización simbólica, estado en el cual un plano deja de parecerse a la realidad que representa para transformarse en un "lenguaje" basado en códigos muy específicos de información.

El trabajo que aquí se presenta está encaminado a abrir una luz en el campo de la formación del ingeniero, desde la óptica de la neumática, que le permita "entender" los proyectos elaborados por técnicos con una mentalidad e ideología diferente y, a su vez, elaborar unos planos que cualquier profesional del entorno industrial pueda interpretar en su idioma sin dificultad.

En el ámbito académico de la ingeniería es fácil discernir entre mecánica, electricidad, electrónica o construcción, pero en el ámbito industrial y profesional esa separación nunca es nítida. En todo proyecto electrónico existe una serie de componentes de carácter mecánico, en todo proyecto de obra civil se localizan instalaciones eléctricas o de conducciones de fluidos.

El campo de la neumática no es una excepción. Forma parte de los pilares de la mecánica, pero hoy día sería un poco temerario plantear una instalación neumática sin componentes eléctricos o electrónicos.

Esta obra aborda la neumática como una unidad intrínseca, pero a su vez está encuadrada en un entorno más ambicioso que trata de cubrir a su vez todas esas áreas comentadas anteriormente. Por esta razón remitimos al lector a la sección de publicaciones del Instituto de Ingeniería e Innovación Industrial, entidad sin ánimo de lucro integrada en la Asociación de Ingeniería y Diseño Asistido, donde encontrará las referencias a esas otras obras de consulta que se hacen imprescindibles a la hora de abordar un provecto industrial serio.

CONTENIDO

PRÔLOGO	5
LISTA DE SÍMBOLOS	7
CAPÍTULO I. PRODUCCIÓN Y ALMACENAMIENTO DE AIRE	
COMPRIMIDO	13
1. INTRODUCCIÓN	15
2. DEFINICIONES PREVIAS	19
2.1 Presión	19
2.2 Caudal	
2.3 Potencia neumática	
2.4 Leyes fundamentales de los gases	
3. COMPONENTES DE UNA INSTALACIÓN NEUMÁTICA	22
3.1 Aseguramiento de la estanqueidad	
4. COMPRESOR	27
4.1 Compresores de desplazamiento positivo	
4.1.1 Compresores alternativos	28
4.1.2 Compresores rotativos	
4.3 Elección del compresor	
5. CALDERÍN O ACUMULADOR	35
6. REFRIGERADOR	37
CAPÍTULO II. REDES DE DISTRIBUCIÓN	41
1. INTRODUCCIÓN	43
2. TUBERÍAS DE DISTRIBUCIÓN	43
2.1 Accesorios de conexión	45
3. DISTRIBUIDORES Y VÁLVULAS	50
3.1 Válvulas de distribución o de vías	53
3.1.1 Clasificación en función del número de vías	53
3.1.2 Clasificación en función del tipo de accionamiento de las válvulas 3.1.3 Clasificación en función de la construcción	
3.2 Válvulas de bloqueo	
3.3 Válvulas de presión	
3.4 Válvulas de caudal	
3.5 Válvulas de cierre	72
CAPÍTULO III. SISTEMAS DE ACONDICIONAMIENTO	77

1. INTRODUCCIÓN	79
1.1 El agua	79
1.2 El aceite	80
1.3 Las impurezas sólidas	80
2. SECADORES Y SEPARADORES	81
3. FILTROS	83
4. REGULACIÓN DE LA PRESIÓN	84
5. LUBRICADORES	86
CAPÍTULO IV. ACTUADORES Y SENSORES	91
1. INTRODUCCIÓN	93
2. CILINDROS	93
2.1 Cilindros de simple efecto	94
2.1.1 De émbolo	
2.1.2 De membrana	
2.1.4 De fuelle	
2.2 Cilindros de doble efecto	
2.2.1 Doble vástago	
2.2.2 De giro	
2.2.3 De émbolo giratorio	
2.2.5 En tándem	.104
2.2.6 Sin vástago	
2.2.7 Antigiro	
3. MOTORES ROTATIVOS	
4. OTROS ACTUADORES	.119
4.1 Garras y mordazas	
4.2 Válvulas hidráulicas de accionamiento neumático	
4.3 Cilindros vibradores	
4.4 Comparadores	
4.5 Bombas de vacío	
5. SENSORES	.124
5.1 Detectores de paso	. 124
5.2 Detectores de proximidad	.126
CAPÍTULO V. DISEÑO DE SISTEMAS NEUMÁTICOS	129
1. INTRODUCCIÓN	.131
2. MANDOS ELEMENTALES	.131
2.1 Mando de un cilindro de simple efecto con válvula 3/2	. 132
2.2 Mando de un cilindro de doble efecto con válvula 4/2	. 133
2.3 Mando de un cilindro de simple efecto con válvula 3/3 con posición de reposo	134
2.4 Mando de un cilindro de doble efecto con válvula 4/3 con posición de	. 104
reposo	.134
2.5 Mando de un cilindro de doble efecto a distancia	. 135

2.6 Mando de un cilindro de simple efecto con limitación del caudal de	
escape	135
2.7 Mando de un cilindro de doble efecto con limitación del caudal de escape	120
2.8 Aumento de la velocidad en cilindros de simple efecto	
3. FUNCIONES LÓGICAS SENCILLAS	
3.1 Función 'Y' con válvula de simultaneidad	
3.2 Función 'Y' por disposición relativa de las válvulas de mando	
3.3 Función 'O' con válvula de selectora de circuito	
3.4 Función 'O' por disposición relativa de las válvulas de mando	142
4. EJEMPLOS DE APLICACIONES	143
4.1 Aplicación de un sistema neumático a la manipulación de cajas de embalaje	143
4.2 Aplicaciones en fabricación	147
4.3 Aplicaciones en montaje	152
5. SISTEMAS DE DISEÑO ASISTIDO EN EL CAMPO DE LA NEUMÁTICA	154
5.1 Simulación	154
5.2 Interpretación de esquemas neumáticos	156
ANEXOS	159
1. UNIDADES MÁS USUALES EN NEUMÁTICA	161
2. EQUIVALENCIA ENTRE UNIDADES DE PRESIÓN	162
3. CARACTERÍSTICAS FISICOQUÍMICAS DEL AIRE	162
4. SATURACIÓN DEL AGUA EN EL AIRE	163
5. CAÍDA DE PRESIÓN POR 10 METROS DE TUBERÍA	164
6. EQUIVALENCIA DE ACCESORIOS EN METROS DE TUBERÍA RECTA	166
7. CONSUMO DE AIRE PARA CILINDROS NEUMÁTICOS	167
8. CARACTERÍSTICAS MECÁNICAS DE LOS CILINDROS	168
8.1 Cilindros de simple efecto	168
8.2 Cilindros de doble efecto	169
9. CONSUMO DE AIRE EN SENSORES NEUMÁTICOS	170
10. RECOPILACIÓN DE SÍMBOLOS BÁSICOS	171
11. NORMATIVA DE REFERENCIA	180
12. ÍNDICE DE TABLAS	183
13. ÍNDICE ANALÍTICO	
14 BIRLIOGRAFÍA	187